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ABSTRACT

Hyperspectral sensors have been of a growing interest over

the past few decades for Earth observation as well as deep

space exploration. However, the amount of data provided by

such sensors requires an efficient compression system which

is yet to be defined. It is hoped that the particular statistical

properties of such images can be used to obtain very efficient

compression algorithms.

This paper proposes a method to find the most suitable

wavelet decomposition for hyperspectral images and intro-

duces the possibility of non isotropic decomposition. The

decomposition is made by choosing the decomposition that

provides an optimal rate-distortion trade-off. The obtained

decomposition exhibits better performances in terms of rate-

distortion curves compared to isotropic decomposition for

high bitrates as well as for low bitrates.

1. INTRODUCTION

Earth observation from space has been of a growing interest

since the first launch of an observation satellite a few decades

ago. Deep space missions for the observation of the sun, plan-

ets, or comets have also become more common and share the

same concerns.

As these missions seek better data quality to improve the

scientific value of the information provided, performances of

sensors improve with an increase in the spatial resolution, the

radiometric precision, and possibly the number of spectral

bands. Hyperspectral sensors provide valuable information

about the observed object. Hyperspectral imagery, or spec-

tral imagery, consists in observing the same scene at different

wavelengths.

Typically, each image pixel is represented by hundreds of

values, corresponding to various wavelengths. These values

correspond to a sampling of the continuous spectrum emitted

by the pixel. This high resolution spectrum sampling allows

pixel identification (materials, mineral and gases. . . ). The

availability of the spectral information for each pixel leads

to new applications in all fields that use remote sensing data

(agriculture, environment, or military), and can help to im-

prove the understanding of the solar system.

Fig. 1. Hyperspectral data cube and an example of isotropic

wavelet decomposition.

However, hyperspectral sensors produce a considerable

amount of information. Data transmission bandwidth and on-

board storage capabilities are already limited for earth ob-

servation satellites, but constraints are even tighter for deep

space missions. Therefore, the compression step becomes a

crucial part of the acquisition system to enhance the ability to

store, access and transmit information.

The specific redundancy between the different wavelength

bands makes hyperspectral data an ideal candidate for com-

pression. However, a suitable and adapted compression sys-

tem is still being awaited. As an example, the spaceborne hy-

perspectral instrument Hyperion on EO-1 does not use com-

pression, thus limiting the amount of data provided.

Existing works focus mainly on two different techniques,

namely vector quantization and wavelets. A wavelet-based

compression system based on SPIHT technique has been used

successfully for the deep space probe Rosetta and for the Cas-

sini mission [1]. Other adaptations of the successful wavelet-

based SPIHT technique from Pearlman seem to be promising

[2].

Most current hyperspectral wavelet compression algo-

rithms are based on an isotropic decomposition of the hyper-

spectral data cube (Fig. 1) and, as a consequence, the spec-

tral dimension is processed in the same manner as the spatial

dimensions. Since the dimensions possess different proper-

ties [3], this is clearly not the optimal way to proceed.

For natural images, Ramchandran and Vetterli in [4] de-

fine a method to find the best wavelet decomposition and
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quantization for a specific 2D-image. Their technique leads

to a decomposition of the image based on a quadtree struc-

ture and only consider square subbands. In the natural image

case, this regular structure is not a real problem since an im-

age has similar properties along the vertical and the horizontal

directions.

A search for non-isotropic decompositions for natural

2D images has been made by Xu and Do in [5] and shows

that non-isotropic decompositions give better performances

than isotropic decompositions in some cases for natural im-

ages. However, the search was not defined within the con-

text of rate-distortion optimisation and some conditions on

the search limited the generalization. If the results obtained

by non-isotropic decomposition are better for natural images,

the improvement for hyperspectral images, which are highly

non-isotropic, can be expected to be greater.

This paper defines the theoretical structure for 3D non

isotropic decompositions in section 2 and adapts the work of

Ramchandran and Vetterli to find the most suitable decompo-

sition for hyperspectral images in section 3. The decomposi-

tion is made by choosing the optimal rate-distortion trade-off,

according to the possibilities of decomposition. These results

are presented in section 4. Perspectives of future evolution

are described in section 5.

2. ANISOTROPIC DECOMPOSITION

Traditionally, on 2-D images, the wavelet decomposition is

isotropic i.e. for one given subband, the level of decompo-

sition in the horizontal direction is the same as the level of

decomposition in the vertical direction. This alternation be-

tween horizontal and vertical decompositions leads to square

subbands (cubes, in the case of 3D data). This is the case

for the multiresolution decomposition of Mallat [6] or the

wavelet packets decomposition. This process is justified by

the properties of traditional images: their statistical proper-

ties are quite similar in all directions.

Thus, we denote W
p,q,r

i, j,k the wavelet subband space

(Fig. 2):

• i, j,k corresponding to the row level, column level and

spectral level respectively (implying the dimension of

the considered subband).

• p,q,r being the row, column and spectral indexes re-

spectively.

A relation can be defined between subbands. For a row

decomposition, the anisotropic wavelet space satisfies

W
p,q,r

i, j,k = W
2p,q,r
i+1, j,k ⊕W

2p+1,q,r
i+1, j,k . (1)

For a column decomposition,

W
p,q,r

i, j,k = W
p,2q,r

i, j+1,k ⊕W
p,2q+1,r

i, j+1,k . (2)

And for a spectral decomposition,

W
p,q,r

i, j,k = W
p,q,2r

i, j,k+1 ⊕W
p,q,2r+1

i, j,k+1 . (3)

For any step of the decomposition, for all subbands, we

are able to choose the direction of the next decomposition,

thus increasing the flexibility of the space decomposition.

Both multiresolution decomposition and wavelet packet de-

composition are special cases of this representation. The

isotropic 3D structure considered in [2] as well as the 2D spa-

tial+1D spectral decomposition used in [7] for video coding

are considered within this general framework.

W
p,q,r

i, j,k

W
2p,q,r
i+1, j,k W

2p+1,q,r
i+1, j,k

W
p,2q,r

i, j+1,k

W
p,2q+1,r

i, j+1,k

W
p,q,2r+1

i, j,k+1

W
p,q,2r

i, j,k+1

Fig. 2. Anisotropic decomposition and notations.

3. RATE-DISTORTION OPTIMIZATION

3.1. The allocation problem

The problem of bit allocation, i.e. distributing optimally the

given bit budget between the subbands, is a classical prob-

lem in data compression. Shoham and Gersho [8] address

this problem within the framework of rate-distortion theory.

Their solution consists in minimizing the distortion under the

constraint of the available bit budget.

Within the context of wavelet decomposition, different

quantizers can be used for different subbands. Let S be the

finite set of the quantizer combination for the subbands, let B

be one element of S. The problem is to minimize the total dis-

tortion D(B) for the given combination of quantizers, B, with

the total rate R(B) within the bit budget Rc:

min
B∈S

{D(B)} under R(B) ≤ Rc. (4)

Using the Lagrangian method, this minimization under

constraint becomes the minimization of the Lagrangian cost

function J without constraint:

J(λ) = D+ λR. (5)

In the context of independent coded subbands, using addi-

tive measures for rate and distortion, it can be shown that R-D
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optimality is attained when all subbands operate at a constant

slope point λ on their R-D curve. Thus, the problem becomes

min{Dk + λRk} for each subband k. (6)

3.2. Algorithm

The algorithm is defined to search the best decomposition si-

multaneously with the best operating point. For one given

subband, the algorithm computes the R-D points for differ-

ent quantizers, thus leading to the R-D curve for the current

subband. The R-D curve is also computed for the 3 possible

further decompositions (for the 3 directions). A representa-

tion similar to Fig. 3 is obtained. For each value of λ, the cost

function J is computed for each admissible R-D point. The

decision of splitting or not the given subband is taken accord-

ing to the minimum cost.

As an example, Fig. 3 shows a case for which the λ slope

leads to take the decision of splitting the given subband in x

direction.

−λ

Fig. 3. Illustration of the split-merge decision during the al-

gorithm. For clarity, R-D curves in the hypothesis of decom-

position in the two other directions (y or spectral) are not rep-

resented and are considered to be above the others.

The search for the best basis is done as:

• Recursive function: cost(W
p,q,r

i, j,k ,λ)

– compute the cost J0 = J(λ) using Shoham and Gersho

algorithm for the current subband

– compute the cost J1

• if the minimum size is not reach for the rows:

J1 = cost(W
2p,q,r
i+1, j,k ,λ)+ cost(W

2p+1,q,r
i+1, j,k ,λ) by recur-

sive calls.

• otherwise J1 = ∞

– compute the cost J2: similar to J1

– compute the cost J3: similar to J1

– return the value min{J0,J1,J2,J3}

• Global Function

– For each λ: call cost(W 0,0,0
0,0,0 ,λ)

– Full rate-distortion curve for the given image

This algorithm leads to a different decomposition for each

image and each targeted bitrate.

4. RESULTS

4.1. Context

The biorthogonal wavelet used in JPEG-2000 standard ((9,7)

filter) is applied to the images. The distortion is measured

based on squared error but to make comparison easier, the

mean square error is converted to Peak Signal to Noise Ratio

(PSNR) on the curves. The relation between PSNR and Mean

Square Error (MSE) is defined by PSNR = 10log10

(
(2B −

1)2/MSE
)
, B being the number of bits per sample. For hy-

perspectral images, the number of bits per digital value is 16,

explaining the high values attained by the PSNR. For Barbara

image, the original number of bits per pixel is 8.

The number of bits necessary to code the subband coeffi-

cients is evaluated using the arithmetic coder defined in [9].

4.2. On 2D images

The search for the best wavelet decomposition has been first

applied to natural 2D images. For some images (the well-

known Lena for example), the best wavelet decomposition is

not so far from the classical multiresolution decomposition.

However, in the case of images containing strong frequency

features, such as Barbara for example (Fig. 4), the decom-

position manages to concentrate the energy in very few sub-

bands (subband 1) and manages to group many coefficients

within the same subband (subband 2). The gain can reach

1.5 dB compared to the classical multiresolution decomposi-

tion as shown in Fig. 5.

Fig. 4. Barbara image and the best anisotropic wavelet de-

composition obtained for a bitrate of 0.9 bpp.

4.3. On hyperspectral images

The results obtained with the algorithm defined in 3.2

are compared with the algorithm used in Rosetta mission

(ESA). The Rosetta algorithm was defined by Langevin [1]

and is implemented on-board the Rosetta mission which
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Fig. 5. Comparison between the classical decomposition and

the best basis decomposition.

is currently travelling into space and will reach the comet

67P/Churyumov-Gerasimenko in 2014. This algorithm is

based on an adaptation of SPIHT algorithm proposed by Said

and Pearlman [10].

The results presented here are obtained on data from the

AVIRIS hyperspectral sensor from JPL/NASA over the Mof-

fett Field site in California (Fig. 1). Moreover, they were con-

firmed on different sites as well as on images acquired by the

satellite sensor from NASA: Hyperion.

As can be seen from Fig. 6, the results of the isotropic de-

composition are very close to the performances of the Rosetta

algorithm. The best basis decomposition brings a clear im-

provement, leading to an increase of the quality of 8 dB. If the

limit is fixed in term of quality, let say for example a PSNR

greater than 70 dB, the necessary bit budget cuts down from

1 bit per pixel per band (bpppb) to 0.5 bpppb.

Fig. 6. Results on hyperspectral data, the anisotropic best-

basis clearly improves the performances.

5. PERSPECTIVES

An adaptive wavelet transform was defined. On natural 2D

images, the adaptative transform performs better than the

usual transform but may not be sufficient to justify the in-

crease in complexity. However, for hyperspectral images, the

increase in performance is significant and enables a better use

of the statistical properties of the data.

Therefore, it would be efficient to use the best decomposi-

tion to adapt compression principles such as SPIHT to define

a compression system for hyperspectral images, especially if

a particular fixed transform performs nearly like the adapting

best decomposition.
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