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ABSTRACT

This paper deals with the optimization of a new technique of image
compression. After the wavelet transform of an image, blocks of
coefficients are further linearly decomposed using a basis selected
in a dictionary. This dictionary is known by both the encoder and
the decoder. This approach is a generalization of the bandelet trans-
form. This paper investigates the problem of the best basis selec-
tion. On each block of wavelet coefficients, this selection is made
by minimization of a Lagrangian rate-distortion criterion. Theoret-
ical expressions of the optimal Lagrangian multiplier can be com-
puted based on asymptotic hypotheses. A nearly exhaustive search
of the optimal Lagrangian multiplier is done for the compression
of high resolution satellite images. This numerical study validates
the asymptotic theoretical expressions but as well provides a refined
expression of the Lagrangian multiplier. At last, the compression re-
sults obtained using those different expressions are compared to the
optimal compression results obtained with the exhaustive search.

Index Terms— Image coding, wavelet transforms, discrete
transforms, optimization methods, satellite applications

1. INTRODUCTION

Wavelet transform has become the common way to achieve very ef-
ficient still image compression. This transform is used in JPEG2000
standard as well as in the new CCSDS recommendation for image
data compression [1] which specially targets on-board spacecraft
compression. Thanks to the pyramidal decomposition which gives
an efficient intrinsic organization of the information, powerful em-
bedded coders have been designed such as EBCOT [2] (Embedded
Block Coder with Optimal Truncation points) in JPEG2000 or the
BPE [1] (Bit-Plane Encoder) in the CCSDS recommendation. Those
coders exploit the information redundancy that still exists between
adjacent wavelet coefficients in space or in scale.

Recently, a new approach has been proposed by Peyré in [3].
Instead of exploiting the information redundancy at the coding time,
a post-transform takes advantage of the residual directional corre-
lations between wavelet coefficients in a small neighborhood. This
post-transform is called bandelet transform by groupings. Post-
transforms are linear transforms applied on small blocks of wavelet
coefficients. They are selected for each block among a dictionary of
bases known by both the encoder and the decoder. A post-transform
is applied on a given block only if it provides a representation easier
to compress i.e. a better representation in the rate-distortion sense.

This paper investigates the best basis selection for each block of
the wavelet transform. The bases in the dictionary have been built
by PCA (Principle Component Analysis). This dictionary has been

proposed in [4] which addresses the problem of bases construction
for the compression. Compression results comparison between the
post-transforms and JPEG2000 can also be found in [4]. The empir-
ical methods used to find the best bases are adapted from the method
described in [5] for the problem of the best bit budget allocation
given a set of quantizer and from the method described in [6] for
the problem of the best wavelet-packet decomposition. In section
2, the post-transform compression scheme is reviewed and the prob-
lem of the best basis selection is introduced. In section 3, two theo-
retical expressions of the Lagrangian multiplier which optimize the
basis selection are given. One is extracted from [7] under the low
bit rate assumption. The other one is derived from the high reso-
lution hypothesis. In section 4, the optimal Lagrangian multipliers
for the compression of satellite images are obtained by a nearly ex-
haustive search. The theoretical expressions are compared to these
results and a new empirical expression is given. Finally, in section
5, compression results obtained using these different expressions of
the Lagrangian multipliers are compared to the compression results
obtained using the optimal Lagrangian multipliers found by the ex-
haustive search.

2. POST-TRANSFORM APPROACH

The compression scheme used in this paper has first been proposed
by Peyŕe in [3] and is fully explained in [4]. After the wavelet trans-
form of the image, post-transforms are applied on each block of4×4
wavelet coefficients. This block size is the best for a simple and ef-
fective compression. Furthermore, studies have shown that correla-
tions between nearby wavelet coefficients are very low at a distance
greater than 4 pixels [8]. Here the dictionary of 36 bases contains
12 orthonormal bases for each orientation (HL, LH or HH) of the
wavelet decomposition. They are obtained from PCA on different
sets of blocks of wavelet coefficients as described in [4]. These bases
perform a very efficient decorrelation of wavelet coefficients.

The figure 1 presents the post-transform process. For each block
i of wavelet coefficients denoted byfi, all the post-transforms as-
sociated to the basesb ∈ [1, NB] in the dictionary are tested. On
each block, the best basisb∗ which gives the post-transform repre-
sentationfb∗

i which minimizes the raterb
i and distortiondb

i trade-off
db

i + λrb
i is selected for the compression. This selection method has

been introduced in [7] for the first version of the bandelet transform.
The problem is to find the Lagrangian multiplierλ which optimizes
the compression efficiency.

The measure of the distortiondb
i = ‖fb

i − fb
i∆‖ is the mean

square error between a post-transformed representation of the block
before and after the quantization. As explained in [4], the bit raterb

i

on each block is estimated based on the distribution of the wavelet



Fig. 1. The post-transform scheme.

coefficient in each subband. Moreover, the additional cost required
to signal the selected basisb for each block is included in this bit
rate estimation. In this paper, once the best post-transform repre-
sentations of each block have been selected, an adaptive arithmetic
coder is used to compress the coefficients as well as the identifiers
of the selected bases. Given a quantization step∆, the goal is to
minimize the overall rate-distortion cost:

D(∆) + λR(∆) (1)

whereD(∆) =
∑

i db∗
i andR(∆) is the total bit rate.

3. THEORETICAL LAGRANGIAN MULTIPLIERS

In [7], Le Pennec addresses the problem of the optimal Lagrangian
multiplier for the best bandelet basis selection. The goal is to mini-
mize the Lagrangian cost (1) where the distortionD and the bit rate
R are related to the quantization step∆. When the Lagrangian cost
(1) is minimized, its derivative vanishes:

∂D

∂∆
+ λ

∂R

∂∆
= 0 (2)

3.1. Expression under low resolution hypothesis

An expression of the variation of the distortionD with the variation
of the quantization step∆ is given in [7]. It depends on the variation
of the numberM of non zero wavelet coefficients:

∂D

∂∆
≈ −3∆2

4

∂M

∂∆
(3)

This expression holds under the low bit rate assumption and for
a uniform scalar quantization outside the zero bin which is twice
larger than the others. This is a common quantization for wavelet
compression [1, 2]. An approximation of the bit rateR under the
low bit rate assumption is extracted from [9]. It also depends onM :

R ≈ γ0 M with γ0 = 6.5 (4)

Finally, the following Lagrangian multiplier expression is obtained
by combining the equations (2-4).

λ ≈ 3

4γ0
∆2 (5)

3.2. Expression under high resolution hypothesis

Under the high resolution hypothesis, a similar expression can be
obtained. Indeed, for a high resolution uniform quantizer, the mean
square errorD is approximated by

D ≈ ∆2

12
(6)

and the average bit rateR can be expressed with

R ≈ h(X)− log2 ∆ (7)

whereh(X) is the differential entropy of the wavelet coefficients
of the image and thus, is a constant for each image. Differentiat-
ing equations (6) and (7) with respect to∆ and combining these
expressions in equation (2) leads to another approximation of the
Lagrangian multiplier:

λ ≈ ln(2)

6
∆2 (8)

Although the hypotheses are different, the two approximations (5)
and (8) of the Lagrangian multiplier are similar. They both express
λ as a linear function of the square of the quantizer step∆2. Fur-
thermore, in both cases, the multiplier factor is approximately0.115.
In order to verify the validity of these theoretical expressions, an ex-
haustive search of the optimal Lagrangian multipliers for the com-
pression of several satellite images is executed in the next section.

4. EMPIRICAL LAGRANGIAN MULTIPLIER

The nearly exhaustive search of the optimal Lagrangian multiplier is
made using processes similar to the ones described in [5, 6].

4.1. Best basis selection

In this section, the quantizer step∆ is fixed. Each blocki of wavelet
coefficientsfi is transformed using all possible basesb ∈ [1, NB]
in the dictionary. For each post-transformed representationfb

i of the
blockfi the distortiondb

i and an estimationrb
i of the bit rate needed

to encode the quantized representation offb
i are computed. Given

any value of the Lagrangian multiplier, the following algorithm is
used to select the optimal representation of each block. Thus, it also
computes the optimal rateR∗(λ) and distortionD∗(λ) for the fixed
λ and∆.

Algorithm 1 : Optimal rate-distortion point

Input : The Lagrangian multiplierλ and the rate-distortion
points

{(
rb

i , d
b
i

)}
b,i

of each blocki transformed in
each basisb

Output : The optimal rateR∗(λ) and distortionD∗(λ)

foreachblocki do
// Select the representation which

minimizes the Lagrangian cost

b∗ = arg minb∈[1,NB]

(
db

i + λ rb
i

)
end

R∗(λ) =
∑

i rb∗
i (λ) and D∗(λ) =

∑
i db∗

i (λ)

Figure 2 is a graphical interpretation of the best basis selection
process on one blockfi. The best representation for the given slope
−λ is found by minimizing the costdb

i + λ rb
i .
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Fig. 2. Graphical interpretation of the best basis selection process
on one block. Each cross corresponds to the rate-distortion point
(rb

i , d
b
i ) of the quantized representation offb

i . The best basis for the
given slope−λ is found by minimizing the quantitydb

i + λ rb
i . This

quantity can be read at the intersection of the line of slope−λ with
the ordinate axis.

4.2. Optimal rate distortion curves with fixed quantization steps

Algorithm 1 is used to compute an optimal rate-distortion point
given a quantization step∆ and a Lagrangian multiplierλ. The
rate-distortion curve optimal for a fixed quantization step∆ is com-
puted withλ ranging from 0 to+∞. In order to obtain the optimal
rate-distortion curve for any quantization step∆, the same process
is repeated for many other values∆. Some of the resulting rate-
distortion curves are plotted on figure 3. The lower hull of these
curves is the optimal rate-distortion curve for any quantization step.

4.3. Empirical optimal Lagrangian multiplier

In order to verify the accuracy of the theoretical expressions (5) and
(8), the best couples(∆, λ) have to be found among all the previ-
ously computed rate-distortion points. Given a Lagrangian multi-
plier λ, the optimal quantization step∆ is the one such that the rate-
distortion cost computed using this couple(∆, λ) is smaller than the
one computed using any other quantization step∆′:

∀∆′ D(∆, λ) + λ R(∆, λ) ≤ D(∆′, λ) + λ R(∆′, λ)

The search of the optimal couples(∆, λ) also amounts to the search
of the lower hull of the rate-distortion curves. The best Lagrangian
multiplier is then the opposite of the slope of this hull:

λ = −∂D

∂R

Studies have been conducted on six large Earth observation im-
ages. Three of them are simulated images of PLEIADES satellite
at spatial resolution of 70 cm. PLEIADES first satellite is to be
launched in 2010. The targeted bit rate for on-board compression
is 2.5 bpp. The other three images have been acquired by PELICAN
airborne sensor and have a resolution of 20 cm. As in [1] the 9/7
CDF (Cohen-Daubechies-Feauveau) wavelet transform is used with
three levels of decomposition. As the images size is1024 × 1024,
there are 64512 blocks4× 4 post-processed by image (the low res-
olution subband is not post-transformed).
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Fig. 3. Rate-distortion curves computed on a 12-bit depth image.
Each curve is obtained with a fixed quantization step∆ and with La-
grangian multipliersλ ranging from 1 to 5000. Each dot corresponds
to a value ofλ.
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Fig. 4. Optimal Lagrangian multipliersλ computed on six Earth ob-
servation images compared to the theoretical curveλ = 0.115∆2.

On figure 4, the optimal Lagrangian multipliersλ obtained on
these images are plotted as functions of the quantizer steps∆. It can
be observed thatλ(∆) is a quadratic function. Indeed, the increasing
rate oflog2 λ is 2× log2 ∆. Nevertheless, the theoretical values do
not fit the experimental curves. They are better approximated by

λ ≈ 0.15 ∆2 (9)

as emphasized on figure 5 on which the ratiosλ/∆2 have been plot-
ted as functions of the bit rateR. It can be seen that this ratio is
almost constant forR between 0.2 bpp and 3.5 bpp. The empirical
expression (9) is used for compression performance comparisons in
section 5.

5. RESULTS ON SATELLITE IMAGES

On figure 6, the optimal compression results obtained by a nearly ex-
haustive search on the Lagrangian multiplierλ are compared to the
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Fig. 5. Mean ratio between the optimal Lagrangian multipliersλ
and the square of the quantizer steps∆2 on six Earth observation
images. This ratio is compared to the theoretical value0.115 on a
wide range of compression bit rates.
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Fig. 6. Losses in PSNR using different formulas to compute the
Lagrangian multiplier compared to the best achievable PSNR. These
are mean results on six Earth observation images.

results obtained using the theoretical formulaλ = 0.115∆2 and the
empirical formulaλ = 0.15∆2. The formula obtained experimen-
tally always gives better results than the theoretical formula and the
optimal results are slightly better than the results obtained using ei-
ther formulas. Nevertheless, the losses with the formulas are always
less than 0,02 dB in PSNR.

Indeed, even if the Lagrangian multipliers are not optimal, the
rate-distortion points computed are still optimal for the Lagrangian
multipliers used. This is the case for the curves shown on figure
3. Thus, the impact of a small error on the Lagrangian multiplier
remains small since the selection of the best basis is still performed
through the rate-distortion optimization process of the algorithm 1.

Although the compression results obtained using the theoreti-
cal formula of the Lagrangian multiplier are more than satisfactory
compared to the optimal compression results, better compression re-
sults are obtained with the new empirical formula. This validates the
study on the search of the best Lagrangian multiplier for the rate-
distortion cost used in the post-transform selection process. More-
over, compression results obtained using another dictionary with dif-
ferent bases are also improved by using the new empirical formula of
the Lagrangian multiplier. The optimal Lagrangian multiplier does
not depend on the dictionary of bases used.

6. CONCLUSION & PERSPECTIVES

This study has shown that the optimal Lagrangian multipliers for the
selection of the best basis for the post-transform can be computed by
a nearly exhaustive process. For complexity reasons, it is still highly
preferable to use a formula to compute the Lagrangian multiplier
even if this formula is sub-optimal. The theoretic formula of the La-
grangian multiplier as a function of the quantization step under the
low bit rate hypothesis is surprisingly similar to the theoretic formula
obtained under the high resolution assumption. By computation of
the optimal compression performance using a nearly exhaustive pro-
cess, it has been shown that the compression performance obtained
using these formulas are close to be optimal. However, another for-
mula has been derived from the experimental results obtained on
Earth observation images. This last slightly improves the compres-
sion results compared to the use of the theoretical formulas. This
improvement may be due to excessive simplifications in in the theo-
retical formulas.

Since the compression scheme used here directly applies an
adaptive arithmetic coder on the post-transformed coefficients, mod-
ifications are needed to adapt it to an embedded coder which is
highly desirable on-board satellites. Future work will focus on the
selection of the best post-transform basis in the context of a bit plane
encoder.
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[3] G. Peyŕe and S. Mallat, “Discrete bandelets with geometric or-
thogonal filters,” inIEEE Int. Conf. on Image Proc., Sept. 2005,
vol. 1, pp. I– 65–8.

[4] X. Delaunay, M. Chabert, V. Charvillat, G. Morin, and
R. Ruiloba, “Satellite image compression by directional decor-
relation of wavelet coefficients,” inIEEE Int. Conf. on Acoust.,
Speech and Sig. Proc., Apr. 2008, pp. 1193–1196.

[5] Y. Shoham and A. Gersho, “Efficient bit allocation for an arbi-
trary set of quantizers,”IEEE Trans. on Acoust., Speech, and
Sig. Proc., vol. 36, no. 9, pp. 1445–1453, Sept. 1988.

[6] K. Ramchandran and M. Vetterli, “Best wavelet packet bases in
a rate-distortion sense,”IEEE Trans. on Image Proc., vol. 2, no.
2, pp. 160–175, Apr. 1993.

[7] E. Le Pennec and S. Mallat, “Sparse geometric image represen-
tations with bandelets,”IEEE Trans. on Image Proc., vol. 14,
no. 4, pp. 423–438, Apr. 2005.

[8] S-Z. Azimifar, Image Models for Wavelet Domain Statistics,
Ph.D. thesis, University of Waterloo, Ontario, Canada, 2005.

[9] F. Falzon and S. Mallat, “Analysis of low bit rate image trans-
form coding,” IEEE Trans. on Sig. Proc., vol. 46, no. 4, pp.
1027–1042, Apr. 1998.


