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Remote Sensing Processing: From Multicore to GPU
Emmanuel Christophe, Member, IEEE, Julien Michel, and Jordi Inglada, Member, IEEE

Abstract—As the amount of data and the complexity of the pro-
cessing rise, the demand for processing power in remote sensing ap-
plications is increasing. The processing speed is a critical aspect to
enable a productive interaction between the human operator and
the machine in order to achieve ever more complex tasks satisfacto-
rily. Graphic processing units (GPU) are good candidates to speed
up some tasks. With the recent developments, programing these
devices became very simple. However, one source of complexity
is on the frontier of this hardware: how to handle an image that
does not have a convenient size as a power of 2, how to handle an
image that is too big to fit the GPU memory? This paper presents
a framework that has proven to be efficient with standard imple-
mentations of image processing algorithms and it is demonstrated
that it also enables a rapid development of GPU adaptations. Sev-
eral cases from the simplest to the more complex are detailed and
illustrate speedups of up to 400 times.

Index Terms—CUDA, GPU, implementation, OpenCL.

I. INTRODUCTION

T HE amount of data acquired by imaging satellites has been
growing steadily in recent years. There is a rapidly in-

creasing number of applications that benefit from the decline
in prices and the easier access to such data. With this prolifer-
ation of data, relying on humans to do most of the high level
interpretation tasks is no longer possible. Some (but not all)
advanced tasks need to be processed automatically. However,
these tasks are more complex, thus raising the computational
power required.

As highlighted in an insightful report from Berkeley [1], the
increase in computational power for the coming years goes
through a parallel approach. High performance computing
(HPC) is a natural solution to provide the computational power
required. There are several approaches to HPC: clusters, grids
or clouds are some examples. However, we chose here to focus
on desktop HPC with the use of graphics processing units
(GPU). The idea is to bring the processing power as close as
possible to the final user to enable better human–algorithm
interaction.

It is now possible to use GPUs to do general purpose pro-
cessing. Benefiting from investment from the movie and gaming
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industries [2], the processing power of GPUs has increased dra-
matically. They have evolved in a different direction than the
general purpose central processing units (CPU). They harbor
hundreds of processing units that are able to work at the same
time. CPUs and GPUs rely on different trade-offs regarding the
amount of cache memory versus the number of processing units.

To benefit from these hundreds of processing units, the in-
herent parallelism of the algorithms needs to be exposed. Often
in the literature, the focus is on the implementation of the core
algorithm. However, one critical difficulty arises from boundary
conditions (when the number of pixels in the image is not a con-
venient multiple) and also from the data size that often cannot
be kept in the hardware memory in one go (thus requiring sev-
eral passes to reach the final result).

When designing a library to benefit from the capabilities of
GPUs, one has to think of both the final user of the program
and the developer who is going to write new programs. For the
former, it is important to keep him isolated from these imple-
mentation details: the program should work for any image size
on any hardware. The latter will benefit from a framework to
simplify the nitty-gritty mechanisms so that he can focus on per-
formances.

The aim of this paper is to present a framework enabling an
easier implementation of the GPU kernel for some parts of a
global remote sensing image processing pipeline. The frame-
work is available as open source software in the Orfeo Toolbox
library [3].

The Orfeo Toolbox (OTB) is an open source library de-
veloped by CNES (the French Space Agency). It contains
numerous algorithms for preprocessing as well as for informa-
tion extraction from satellite images [4].

One of the main objectives of the Orfeo Toolbox (OTB) is
to provide a strong and robust software architecture to facilitate
the scalability of newly implemented algorithms and to relieve
(at least partially) the researcher from such concerns. The pro-
cessing model for OTB has its roots in the Insight Toolkit [5]
and has been proven to be effective for remote sensing images
as well as for medical images. The general architecture of OTB
is described in Section II-A and in Section II-B we describe how
it can be used to exploit the GPU processing capabilities.

In Section III, several examples of implementation with
increasing complexity are described and show improvement
ranging from zero to 400 times faster than the comparable CPU
implementation.

Section IV discusses some of the perspectives that arise from
such a speedup in the way we design and work with algorithms.

Finally, Section V concludes, presenting some directions for
further improvements.

II. PROBLEM STATEMENT

This section presents the main issues related to the processing
of remote sensing images: scalability. There are two dimensions
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Fig. 1. Streaming model for OTB: illustration on a simple pipeline with two processing filters between a reader and a writer. One filter (filter 1) does pixel by
pixel processing, while the other (filter 2) does a neighborhood processing.

to this problem: the size of the data and the time required for pro-
cessing. A significant bottleneck for the use of new algorithms
is the jump from toy image examples to real satellite images.
The first issue is related to the size of the image which cannot
be held into memory any more (Section II-A) and the second is
related to the computation time and how to benefit from mul-
tiple computation units as commonly found in CPUs and GPUs
(Section II-B). Even if those two problems are related, they play
a part at different levels.

A. Image Size Scalability: Streaming

The sheer size of satellite images—several gigabytes—makes
processing by usual methods inapplicable on standard com-
puters. It is not desirable or possible to load the entire image
into memory before doing any processing. In this situation, it is
necessary to load only part of the image and process it before
saving the result to the disk and proceeding to the next part.
This corresponds to the concept of on-the-flow processing.

Remote sensing processing can be seen as a chain of events or
steps that lead to a final output [6]. Each of these steps is gener-
ally independent from the following ones and generally focuses
on a particular domain. For example, the image can be radio-
metrically corrected to compensate for the atmospheric effects,
indices (such as NDVI) computed, before an object extraction
based on these indexes takes place. The typical processing chain
will process the whole image for each step, returning the final
result after everything is done.

For some processing chains, iterations between the different
steps are required to find the correct set of parameters. Due to
the variability of satellite images and the variety of the tasks that
need to be performed, fully automated tasks are rare. Humans
are still an important part of the loop.

In these conditions, it is valuable to be able to provide some
feedback quickly for only parts of the image and reprocess this
part for a different set of parameters. Better yet if only the mod-

ified steps are reprocessed and not the whole chain; this is the
concept of on-demand processing.

These concepts are linked in the sense that both rely on the
ability to process only one part of the data. In the case of simple
algorithms, this is quite easy: the input is just split into different
non-overlapping pieces that are processed one by one. But most
algorithms do consider the neighborhood of each pixel. As a
consequence, in most cases, the data will have to be split into
partially overlapping pieces.

The objective is to obtain the same result as the original al-
gorithm as if the processing was done in one go. Depending on
the algorithm, this is unfortunately not always possible.

In the Orfeo Toolbox, the processing elements are organized
in the library as filters. Filters perform operations such as
reading and writing the data, but also processing, e.g., linear fil-
tering, thresholding or classification. Writing a new application
(or a new processing chain) consists of plugging a few filters
together to create a processing pipeline. As highlighted above,
in most cases, the whole image cannot be held in memory at
once and a different processing model is required.

Fig. 1 illustrates the process on a simple example. In this case,
four filters are connected together:

• a reader that loads the image, or part of the image in
memory from the file on disk;

• a filter which carries out a local processing that does not
require access to neighboring pixels (a simple threshold for
example), the processing can happen on CPU or GPU;

• a filter that requires the value of neighboring pixels to com-
pute the value of a given pixel (a convolution filter is a typ-
ical example), the processing can happen on CPU or GPU;

• a writer to output the resulting image in memory into a file
on disk, note that the file could be written in several steps.

We will illustrate in this example how it is possible to com-
pute part of the image in the whole pipeline, incurring only min-
imal computation overhead.
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Once all the filters are connected together and the pipeline is
created as in Fig. 1(a), the processing is started by a call on the
last filter of the pipeline, which is the writer in our example. This
filter requests its input to provide the information regarding the
size of the image it will produce [Fig. 1(b)]. The reader gets the
information by reading the metadata of the file and the informa-
tion is propagated through the pipeline [Fig. 1(c)]. Eventually,
filters can modify this information, depending on the processing
they apply on their input.

Once the writer has the information regarding the size of the
data it has to produce, it can compute the splitting strategy: de-
pending on the maximum memory specification, it will select
only a small area of the image to request to its input filter. In
Fig. 1(d), this area is represented by the red rectangle. The writer
requests this area to its input: filter 2. This filter needs the value
of the neighboring pixels of each pixel to be able to process its
output. For the pixels in the middle of the region, this is not a
problem, however, the region needs to be expanded to accom-
modate the need of the pixels at the border. This extension is
represented by the blue rectangle in Fig. 1(d).

Here, there are two different cases: either the value is part of
the image and can be obtained, or it is outside of the image area.
In the first case (the bottom line in our example), the region is
simply extended and the value will be generated by the input
filter. If the value is outside of the image (top, left and right of
the red region in our example), a strategy is necessary to create
this value. This is handled at the filter level and several strategies
(boundary conditions) are available: constant value, mirror, zero
flux Neumann. In Section III-B, we will see how this strategy
can ease the constraints on the GPU implementation.

Once the request reaches the reader, which is the first filter of
our pipeline, it can generate the requested area from the file and
pass it to the next filter [Fig. 1(e)]. Once the region reaches the
writer, it is written on the disk and the process continues with
the next tile [Fig. 1(f)].

This process relies on the capability of each filter to deter-
mine the size of the input needed to produce the output required
by the downstream filter. Some specific algorithms cannot be
rigorously implemented to work only on extracts of the image:
Markov fields for example where the iterations introduce po-
tential long range dependencies between pixels. In these situa-
tions, an approximation can usually be obtained. Note that the
processing of the different tiles is independent and does not use
common memory. It could ideally be coupled with distributing
processing techniques (cluster or grids) where each node would
process a tile, but this point is outside the scope of this paper.

The process is illustrated above in great detail, but it is worth
mentioning that the user of the library does not need to under-
stand this mechanism. Indeed, he may not even need to be aware
of it. The developer of new filters, does not need to fully un-
derstand it, having a knowledge of the relevant customization
points is sufficient. This design will appear to be critical in the
context of the use of GPU where the memory is more limited.

B. Processing Unit Scalability: Multithreading

1) Short Review of CPU Versus GPU Architecture: Several
architectures are available to enable parallel processing of data.

The most common are SIMD and MIMD (using Flynn’s tax-
onomy [7]). SIMD (Single Instruction, Multiple Data streams)
where the same set of instruction is applied on several data
streams is particularly suited to digital image processing. SIMD
is available in CPU and enable to apply a single operation on
multiple data at once. MIMD (Multiple Instruction, Multiple
Data streams) corresponds to using several cores in a single die.
These cores are able to execute independent instructions on dif-
ferent data.

Recent CPU combines several parallelization techniques to
increase performances while giving the impression that they
work sequentially: branch prediction, out-of-order execution,
superscalar. All these techniques increase the complexity of the
CPU, limiting the number of CPUs that can be included on a
single chip.

On the other hand, GPUs keep each processing unit simple
but pack thousands of them on the chip. One of the critical dif-
ference is the lower amount of cache memory available. As a
consequence, the GPU will work well when the level of data par-
allelism is high and enable masking the latency of each thread.

If we omit some of the details above and compare how CPU
and GPU will process the pixels of the image: we can consider
that the CPU will process each pixel sequentially but very fast
while the GPU will process them slower but a whole lot of them
at a time.

2) The Rise of Multicore CPUs: As the frequency of proces-
sors is reaching limits due to heating issues, advances in pro-
cessing capabilities of recent CPUs are geared towards the in-
crease in the number of cores [1], [8]. Recent CPUs are able to
handle 8 to 12 threads simultaneously.

However, designing an application to benefit from these mul-
ticore architectures is not straightforward. The problem is to be
able to split the data into different entities that can be processed
simultaneously.

In Section II-A, the main issue was limiting the size of the
image to load into memory; here it is to draw on the availability
of several processors. One common point between the two prob-
lems is that they rely on the possibility to process an extract of
the data at a time. A major difference is that multithreading in
the context of multicores will have access to shared memory
between the cores. In the case of streaming, there is no shared
memory between the tiles.

In OTB, the multithreading is done on a per filter basis with a
portable implementation using one of the multithreading library
available in the system (sproc, pthreads or Win32 Threads). In
the previous example of Fig. 1, let us consider for example that
filter 1 is multithreaded. In that case, when processing the re-
quested blue region in step (e) of Fig. 1, the blue region is going
to be subdivided into regions each to be processed by one
thread.

This ability to process a given region with multiple threads
(around 10 in the case of the CPU) needs to be extended to the
few thousands threads required to efficiently utilize a GPU [9].

3) Switching to GPUs: GPUs first appeared in the 1980s
as hardware dedicated to graphics processing. Over the next
decades, they progressively increased their capabilities to 3D
processing. These chips are highly optimized for graphics-re-
lated operations, with floating point computation and massively
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Fig. 2. Evolution of Intel CPUs and Nvidia GPUs over the last decade (source:
Intel export compliance metric, Nvidia specifications and Wikipedia).

parallel computation. The parallel computation is a critical
difference to the traditional CPUs architecture. The reason is
that the pixels to be displayed can be computed independently.
When switching one algorithm from CPUs to GPUs, the major
challenge is to take advantage of this parallel organization.

Switching the programming model from sequential to parallel
is not an easy task. Most of the time, the program needs to be
rewritten to expose large amount of fine-grained parallelism, en-
abling the use of thousands of concurrent threads. The part that
requires parallelization needs to be clearly exposed and defined
by proper profiling. Potential gains attainable by optimizing part
of the program are limited by Amdahl’s law [10]:

(1)

where is the proportion of the program being parallelized and
is the speedup obtained on this particular part. For example,

when improving a part of a program that represents 50% of the
total execution time , even with an infinite speedup

, the overall speedup is only 2.
Nevertheless, the performance evolution between CPUs and

GPUs justifies the effort. There is no perfect measure of com-
parison between CPUs and GPUs. Indeed, they are highly op-
timized for a specific class of problems. However, one indica-
tion of the evolution is the number of floating point operations
per second (Flops/s). Fig. 2 presents the evolution of the Nvidia
GPUs compared with the Intel CPUs over the last decade. One
important provision is that these numbers are usually provided
for double precision computation for CPUs and single preci-
sion computation for GPUs. GPUs are known to be significantly
slower when double precision computation is required. How-
ever, recent GPUs address this issue. From these data, we can
see that the GPUs are doubling their processing power every 12
months while CPUs do it in 18 months (according to Moore’s
law).

Until recently, benefiting from the GPU computing power re-
quired the developer to map the problem in terms of graphic
primitives (using texture operations). This approach led some

people to develop frameworks to alleviate this complexity. An
example is presented in [11] to help process hyperspectral im-
ages. But mapping the problem in terms of graphic primitives
remains awkward.

With the release of the first version of CUDA in 2007 and
OpenCL in 2009, the programming model for GPUs was greatly
simplified. CUDA is the language introduced by Nvidia on its
G80 GPU series. The language is specific to one vendor and its
hardware. However, it benefits from several years of usage, and
the availability of numerous libraries are increasing its popu-
larity.

OpenCL was developed by a consortium and released in
2009. It aims at supporting more hardware and to provide a
standard for general purpose parallel programming across
CPUs, GPUs and other processors, giving software developers
portable and efficient access to the power of these heteroge-
neous processing platforms [12].

Both Cuda and OpenCL use the concept of kernel. A kernel is
a series of operations that will typically be applied to one pixel.
Each kernel will be handled by one of the numerous GPU pro-
cessors. The flow of pixels forms a stream that will be processed
by the kernel. This abstraction relieves the developer from the
management tasks.

With these two languages that enable C-like programming,
the learning curve to benefit from the GPU is significantly flat-
tened [13] and several papers demonstrate good implementa-
tions for a wide range of problems such as for graph [14], sorting
[9], and general purpose algorithms [15].

Recently, a paper from Intel researchers questions the 100x
gains presented in several papers comparing CPU and GPU
[16]. In their paper, Intel engineers use their extensive knowl-
edge of the CPU architecture to draw the most out of it. De-
pending on the specific problem at hand, they conclude with a
speedup for the GPU implementation over the CPU implemen-
tation ranging from 0 to 15. We have to note that the GPU cost
is about half of the CPU in this particular study.

A comparison between OpenCL and Cuda is done in detail in
[17]. Table I summarizes some of the different trade-offs be-
tween CUDA and OpenCL. The kernel code (the part of the
program which implements the computations on the GPU) is al-
most identical in both cases which means that investing efforts
into one technology will also benefit the other in case a change
is required in the future. The setup of the kernel (the part of the
code which prepares the data and transfers it to the processing
units) is more complicated in the OpenCL case as there is some
overhead due to the support for more heterogeneous hardware
and for the compilation of the kernel during execution. However,
this increased complexity enables more portability as OpenCL
targets CPUs and GPUs alike. Concerning the availability of ex-
isting code, CUDA benefits from a head start of a few years com-
pared to OpenCL and from many libraries heavily optimized for
most common tasks (FFT, linear algebra, etc.).

In terms of performance, this difference in the development
stage has an impact. An earlier study [17] concludes that the
OpenCL implementation is 13% to 63% slower. Fig. 10 com-
pares the performances of equivalent implementations using
CUDA and OpenCL on the same hardware (OpenCL is about
45% slower).
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TABLE I
COMPARISON BETWEEN CUDA AND OPENCL

GPU memory is more limited than CPU memory. As sev-
eral types of memory are available, special attention to which
memory is used is required for further optimizations.

In the case studies described in the next section, the amount
of data to be processed can be above the memory size. An-
other issue appears related to the size of the images. In most
cases, each thread of the GPU will process one pixel. Due to the
hardware architecture, threads need to be gathered into thread
blocks, forming, for example, a group of 16x16 threads. This is
fine if the image size is a multiple of 16. However, when pro-
cessing regular images, this is unlikely, and this problem needs
to be accounted for.

It can be handled at the GPU level, but it usually involves
branching conditions. If possible, it is better to handle it before
transferring the data to the GPU, making sure that the data size
is suitable (a multiple of 16 in the example above). The pipeline
model (Fig. 1) does just that: when the processing requires some
neighborhood information (a simple case is a convolution), the
pipeline is able to adapt the requested region to ensure that the
necessary data are available. To comply with the GPU require-
ments, we just adapt this request to make sure that the region
size is a multiple of 16.

In the following examples, the size of the image is handled
as described in Section II-A. The only modification, which fits
perfectly in the pipeline structure, is how the filter is computing
the region required to produce the output.

III. CASE STUDIES OF GPU MIGRATION

In this section, we introduce several examples of processing
algorithms in order to illustrate different trade-offs in terms of
memory size and computation complexity, which will allow the
reader to get insight on the benefit of GPU-based approaches
and when it would be most profitably applied. We have selected
three algorithm categories that cover most of the steps of a clas-
sical remote sensing image processing chain.

Relative performances are compared between the original
program on CPU using either a multithreaded implementation
or otherwise, and the same program running on GPU which
provides similar results. Outputs are compared to make sure
that no differences other than those due to the single precision
computation appears.

It is always a delicate task to compare programs using their
execution time as it depends heavily on the quality of the imple-
mentation. Unlike what was done in the Intel’s study [16], we
do not push the implementation optimization to the maximum,
but instead choose to focus on good quality implementation at-
tainable with reasonable effort and hardware knowledge by the
typical remote sensing scientist. There is probably room for im-
provement on the CPU side (using SIMD) as well as on the GPU
side (coalescing access).

The hardware is an Intel i7-920 with 6 GB of RAM; the GPU
is a Nvidia GTX-260 used purely for processing, the display
being handled by another card. In terms of software, the C/C++
compiler gcc/g++ 4.4.3 is used with version 3.0 of the CUDA
toolkit for both CUDA and OpenCL simulations. Compilation
option used is -O3 which turns on all the optimization available.

A. Pixel-Based Processing, a First Naive Example

The first category of algorithms refers to those which per-
form operations on single pixels without the need of context.
This category can include any arithmetic or logical operation
on pixels such as simple additions and thresholdings or more
complex computations such as numerical solutions of equations
where the pixel value is a parameter. This category also includes
pixel-based classification such as maximum likelihood, neural
networks, or SVM classifiers. Finally, another interesting subset
of algorithms for remote sensing image processing which be-
long to this category are the coordinate transformations used in
image orthorectification (through sensor models), map projec-
tion transforms, and any analytical model-based in preparation
for image resampling.

As the data transfer from the CPU to the GPU is relatively
slow, the key factor in order to benefit from the GPU’s massively
parallel architecture will be the complexity of the pixel-wise op-
eration. In order to illustrate this, we have selected two classical
algorithms.

1) Algorithm Description: The first algorithm is the com-
putation of the normalized difference vegetation index (NDVI)
[18] which is a radiometric index which combines the red
and near infrared reflectances in order to estimate the
amount of vegetation:

(2)

The second algorithm is the spectral angle mapper (SAM),
which computes, for each pixel of the image with bands, the
spectral angle with respect to a reference pixel . The spectral
angle is defined as

(3)

where is the spectral band, is the reference pixel, and is
the current pixel. The interest of evaluating the SAM is that its
computation is more costly due to the square root and the arccos
function.

2) Implementation Details: The straightforward way to im-
plement these pixel processing algorithms is to get each thread
of the GPU to process one pixel. In this case, the kernel is very
simple as shown in Fig. 3.

Unfortunately, in this case, the GPU processing appears to be
slower than the CPU by about 20% (Fig. 4). A quick profiling
of this case shows that the kernel spends about 92% of its time
for memory transfer and only 8% for the processing. This shows
clearly that the NDVI computation is too simple to get any ben-
efit by itself from the GPU architecture.

On the other hand, the computation cost for the spectral angle
(3) is higher than the NDVI. In this case, we start to see some
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Fig. 3. Naive kernel example for NDVI: unfortunately, the amount of pro-
cessing for each pixel is too low to get any gain from GPU.

Fig. 4. Computation time for the NDVI for increasing image sizes: NDVI is
not a good candidate to benefit from a GPU implementation on its own.

gain from using the GPU, but it is not yet convincing (Fig. 5):
the GPU is faster than the CPU using one thread, but comparable
to the CPU fully using its 8 threads.

3) Results: Fig. 4 shows the computation time for the NDVI
for image size from 1000 1000 to 6000 6000. Due to the
significance of the IO operations compared to the computation,
the execution time displays a large variance; average timing and
the standard deviation for these timings on at least 20 runs are
represented. As one can observe, the NDVI computation is too
simple to be a good candidate for GPU optimization on its own.
Actually, the GPU version is slower than the CPU versions.
However, the multithreaded CPU implementation brings some
benefit with respect to the single-threaded one but the improve-
ment is also limited and much lower that the factor 8 expected.

Fig. 5 shows the same kind of simulation for the spectral angle
computation. Here, the parallel implementations are much more
efficient than the single threaded one, but the spectral angle
is still too simple for the GPU implementation to provide a
speedup with respect to the CPU multithreaded one.

B. Neighborhood-Based Processing

The second category of algorithms we are interested in is the
ones which use a pixel and its close neighbors (on a regular grid)
in order to compute the output value for a single pixel. This
category includes many image processing tasks such as linear

Fig. 5. Computation time for the spectral angle for image size from 1000 �
1000 to 6000� 6000: there is some improvement over the CPU implementation
on a single thread, but it is still not sufficient to justify a GPU implementation.

Fig. 6. Illustration of the fine correlation process.

filtering by convolution, but also nonlinear filtering (median,
mathematical morphology), local statistics, etc.

Texture estimations using the Grey-Level Co-occurrence Ma-
trices (GLCM) are also in this category, but they are more com-
putationally intensive since two shifted neighborhoods are used,
so they are very interesting candidates for GPU implementation.

1) Algorithm Description: We choose here another particular
case where the local computation is made using several pixel
neighbors: fine image correlation. This technique is used for
disparity map estimation between stereo image pairs [19]. Let

be the reference image and be the secondary image, which
are supposed to be roughly superimposable; one is interested in
finding the local shift between small image patches
which maximizes the correlation coefficient:

(4)

This processing is applied for every shift in a given explo-
ration area and for every pixel in the image (see Fig. 6).

2) Implementation Details: This particular problem of the
estimation of a disparity map by fine correlation poses several
issues for the implementation on GPUs and the adaptation is not
as straightforward as the previous examples. On the other hand,
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Fig. 7. Computation time of the fine correlation for different hardware for dif-
ferent search radius size and for a image size from 100�100 to 700�700 pixels:
the GPU version is 8 to 12 times faster that the multithreaded CPU version fully
using 8 threads.

the amount of computation per pixel is much greater than in the
previous cases, so the potential gain is significant.

An adaptation of a similar algorithm to perform the auto-cor-
relation of an image is given in [20], but the search window size
was specific to their problem and involved different trade-offs.

The first question is which part of the processing should be
implemented on the GPU. After profiling the CPU version of the
algorithm, it appeared that 95% of the time was spent in com-
puting the correlation for each shift. Producing the correlation
map for each pixel seems to be the ideal part to be implemented.

The second question concerns the degree of flexibility re-
quired in the implementation. Of course, we do not want any
limit concerning the size of the image to be processed. But given
the streaming process described in Section II-A, it is not an
issue. However, we also do not want a restriction on the size
of the patch used to compute the local correlation or on the size
of the exploration window.

The approach chosen for this case is that each thread will
compute the correlation value corresponding to one displace-
ment. Each block of threads will compute the correlation map
for one pixel. Of course as there is no restriction in the size of the
search window, the number of possible displacements for one
pixel (which is computed by one thread block) can be greater
than the maximum number of threads in one block (which is
currently limited to 512). To go around this limitation, when
the window search size is too big, the whole correlation map is
computed through multiple kernel launches with different pa-
rameters.

There is an issue with the matching window which can extend
outside of the image. One way to solve the problem is to make
costly checking for each access directly in the GPU kernel. Here
we avoid the issue altogether by using the strategy presented in
Section II-A which ensures that all accesses will be valid.

The final result (Fig. 7) shows a speedup of 8 to 12 times com-
pared to the CPU implementation for the whole fine registration
process. The correlation computation is no longer the limiting
factor and further improvement would require improving the in-
terpolation process to find subpixel displacements.

3) Results: Fig. 7 shows the computation time for the fine
correlation for different image size and different radius for the
search windows. A search window of radius 25 means that 2601
(51 51) different possible displacements will be explored for
each pixel. In all cases, the size of the patch was fixed to 11 11
pixels. The CPU time corresponds to the multithreaded version,
making full use of the processor. Here the difference between
the GPU version and the CPU version is significant. For ex-
ample, a processing that takes 4 min 30 s on the GPU takes more
than 51 min on the CPU. It is worth noting that the correlation
computation part, the only one implemented on the GPU here,
used to represent 95% of the total computation time. The exe-
cution time for this part has been reduced by a factor of 20 and
now represents only 50% of the total computation time. To ob-
tain significant further improvements it is required to work on
another part of the computation such as the correlation map in-
terpolation [cf. Amdahl’s law in (1)].

C. Irregular or Non-Local Processing

This third class of algorithms consists of cases where the
pixels we are interested in are in irregular positions or represent
only a small percentage of the pixels of the image and the com-
putation to be performed is very demanding. In these cases, the
amount of data to be transferred to the processing unit is small
and the computing cost is large.

In remote sensing image analysis, some examples of these
algorithms are irregular interpolation by thin plate splines, his-
togram kernel estimation, Voronoi/Delaunay triangulations, and
vector object processing (operations on polygons or poly-lines
yielded by segmentation and detection algorithms).

1) Algorithm Description: One example of such processing
is point density estimation. This program estimates the point
density for every point in an image for a given set of points.
Several applications use this density estimation: we can mention
point feature extraction such as SIFT [21], permanent scatterers
in SAR images [22], among others. One example of possible
output for this process is illustrated in Fig. 8.

The estimation is done using a Gaussian kernel as in (5) where
denotes the distance between the pixel where the density

is computed and the point of the set of points:

(5)

This equation means that the density is spread around point
following a Gaussian model.
The decision to optimize this problem was taken after

noticing that the CPU performances of the original version
of the program were not satisfying, taking hours to provide a
density map of permanent scatterers.

Another example is the learning step of SVM classifiers [23].
As mentioned in Section III-A, SVM classification belongs to
pixel-based processing, since class prediction for a given pixel is
only a matter of a few scalar products with support vectors. Prior
to SVM classification, SVM learning is the task of identifying
these support vectors into a training set and involves several
iterations over a set of training examples which can be located
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Fig. 8. Example of possible output of a point density estimation: in this ex-
ample, the points correspond to SIFT detections. About 10,000 points are de-
tected on this image.

anywhere in an image. This makes the SVM learning algorithm
fall into the class of irregular algorithms.

2) Implementation Details: For the density estimation ex-
ample, there are two different approaches to compute the final
image. One is to go through the set of points and, for each of
them, compute their impact on the whole image using an ac-
cumulator. The other approach is to go through all pixels and,
for each of them, sum up the impact of all points in the point
set. Depending on the relative size of the image and the point
set, one or the other can be privileged in the case of CPU imple-
mentation. The first one corresponds to a scatter approach while
the second one is a gather approach.

The gather approach is one where the computation of one
output pixel is done at once by a single computation unit, gath-
ering information from several positions from the input. The
scatter approach is the reverse, when input are accessed once
by a single computation unit and their impact is reported to the
relevant output pixel which works as an accumulator.

GPUs are more suited to the gather approach and this is the
one selected here: for each pixel, we go through the point set and
compute the impact of each point to this pixel. The other advan-
tage is that this approach is perfectly suitable for the pipeline
model described in the previous sections.

This simple approach, where one thread processes one pixel,
iterating over the list of points, already provides an impressive
gain compared to the CPU version. However, using additional
features available from GPUs, additional performance gains are
possible.

The first improvement is to use the constant memory of the
GPU. Accesses to the constant memory are much faster when
they are synchronized between the threads. Constant memory
is the ideal candidate to store the point coordinates as they are
frequently accessed by each thread.

Another source of improvement is to factorize some compu-
tations that are common to different threads, thus reducing the
total amount of computations to be performed. When computing

Fig. 9. CUDA kernel for the point density computation: each thread computes
the density value for four points of the same line simultaneously. The OpenCL
kernel is very similar.

the distance between one point and one pixel, the computation
is done for the component and the component. The com-
ponent will be the same for all the points of a line. By using
one thread to process not only one point, but several points on
the same line, this part of the computation can be done only
once. A trade-off has to be made to keep the number of threads
high enough to use all the computation units of the GPU and not
to use too many registers (as that would reduce the number of
threads that can run concurrently). In the present example, each
thread processes four consecutive points on the same line.

In this case, as shown in Fig. 10, the improvement over the
GPU is impressive: 130 times faster than the multithreaded CPU
version.

Regarding the SVM learning problem, the CPU implemen-
tation relies on LibSVM [24], a widely known library to per-
form SVM classification and regression, while the GPU ver-
sion was handled by cuSVM [25], a CUDA implementation of
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Fig. 10. Computation time of the point density for different hardware for dif-
ferent number of points for an image of 36 MPixels: the GPU version is about
130 times faster that the multithreaded CPU version (Note that the timing is in
logarithm scale).

SVM restricted to regression and two-class classification with
a Gaussian kernel. In this case, all that is needed is to fit the
LibSVM and cuSVM calls into the Orfeo Toolbox framework.
In each case, the learning and classification steps are imple-
mented in separate filters and the classification filters are given
streaming capabilities. Parameters from both libraries are tuned
to match results as closely as possible.

3) Results: Fig. 10 presents the results obtained by the imple-
mentation of the point density computation. Here, the gain is so
significant that a logarithm scale is used to show the CPU and the
GPU time on the same plot. The speedup from the GPU version
is about 130 times. For this particular case, two implementations
for CUDA and OpenCL are realized. It appears that for this par-
ticular case the OpenCL implementation is about 45% slower
than the CUDA implementation. However, the gain compared
to the CPU is still impressive, and with respect to the CUDA im-
plementation, there is the advantage of supporting a wider range
of hardware including CPUs and GPUs. Computation speed im-
provements of such an order of magnitude open a whole range of
possibilities where interactive processing becomes convenient.

Regarding the SVM learning and classification problem, both
CPU and GPU filters have been used to perform change de-
tection on a pair of registered SPOT5 images in the context
of a severe flooding event. This dataset contains 2320 4320
pixels with three spectral bands for each date. A training mask
of 62,676 pixels denoting change and no-change areas was used
to train the SVM. The learning step took 572 seconds with the
CPU implementation, while only 1.35 seconds were necessary
for the GPU implementation to converge, which is tremendously
faster (more than 400 times), although we should mention that
the CPU version of the learning step is mono-threaded in this
case. As expected, being a simpler algorithm, the classification
step shows smaller time improvements, with 489 seconds for
the multithreaded CPU version and 146 seconds for the GPU
one—only about 3 times faster.

IV. DISCUSSION AND PERSPECTIVES

As we have seen, some classes of algorithms can benefit
tremendously from a GPU implementation. Typically, these
algorithms can be identified as algorithms that do mostly local
processing (limited distance impact) and intensive computation
for each pixel. We have seen for example that the SAM is at
the lower bound in terms of computation to make it valuable
to implement on GPU for an image with four bands (Fig. 5).
In that particular case, the limit appears to be a few hundred
operations (mainly due to the trigonometric function). Below
this limit, the time spent transferring the data from the CPU
memory to the GPU overcomes any benefit in the computation
speed.

Above this limit, the benefits can be very important. In some
cases, they can be so important that they could change the way
the human interacts with the process. When the process takes
hours, or even minutes, it is not conceivable to have the user sit
in front of the computer, waiting for the results. In this case, the
data will be processed from end to end and the user will exploit
the final result. If there is a need to adjust some parameters, the
data will be reprocessed.

One drawback of this classical scheme is that it tends to limit
the interactivity between the human and the algorithm. When
we reach a situation where we can process a screen size area in
about a second, it becomes possible to do the processing in real
time. In this situation, any modification of any parameter will
trigger immediate feedback: the user is able to interact much
more with the algorithm. The human can become a real part of
the processing chain.

This can lead to an improvement of the classic processing
chains in use, but it can also lead to the development of new
paradigms. One obvious example is the application of active
learning to remote sensing problems [26]. Benefiting from the
major speed-up brought by the GPU implementation of SVM
learning (see Section III-C3), the training samples selection
step could change drastically: near-real-time feedback on the
pertinence of selected samples and on primitive-wise confi-
dence of the classifier becomes achievable. Other common
remote sensing image processing tasks could benefit from
immediate quality feedback, such as image co-registration for
instance.

V. CONCLUSION

As demonstrated in this paper, adapting the most expensive
part of a processing pipeline to benefit from the processing
power of GPUs is quite simple. With a minimum investment
(hardware cost is around US$200, the software used here is
free and open source), performance gains can attain 10 to 400
times on the critical portion of the processing.

One of the main shortcomings, which is the relatively slow
computation in double precision (important for some scientific
computations), has been addressed by the new Fermi architec-
ture released by Nvidia in April 2010. We will definitely wit-
ness an increasing number of GPU implementations for remote
sensing processing algorithms in the near future.
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Still, benefiting from this massive speed-up requires one to
carefully select those algorithms which fit well in the GPU com-
puting architecture, identify the critical sections to optimize, and
look closely at how things are implemented.

All this complexity should remain hidden to the end-user,
which is exactly what the high level of abstraction provided
by the Orfeo Toolbox framework allows. Further improvements
can be made in that direction by proposing a mechanism to
switch seamlessly from CPU to GPU versions of algorithms
depending on available hardware. Another interesting perspec-
tive would be to run GPU-enabled filters on GPU blades, which
gather several GPU devices on a single hardware.

The source code corresponding to the examples presented in
this paper used to generate the results is available for download
from the Orfeo Toolbox web site (http://www.orfeo-toolbox.
org/OTB-GPU). Most of it will be integrated in the upcoming
releases of the library.
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