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Abstract— With the increase of remote sensing images, fast the CCSDS (Consultative Committee for Space Data Systems,
access to some features of the image is becoming critical. i5h which gathers experts from different space agencies as NASA
access could be some part of the spectrum, some area of thezga and CNES) is oriented towards zero-trees principles [2]

image, high spatial resolution. An adaptation of 3D-SPIHT . . - .
image compression algorithm is presented to allow random because JPEG 2000 suffers from implementation difficutges

access to some part of the image, whether spatial or spectral described in [3] (in the context of implementation complatib
Resolution scalability is also available, enabling the deding with space constraints).

of different resolution images from the compressed bitstram This paper presents the adaptation of the well-known
of the hyperspectral data. Final spatial and spectral resaltions SPIHT algorithm [4] for 3D data enabling random access

are chosen independently. From the same compressed bitstn, - - . o .
various resolutions and quality images can be extracted wke and resolution scalability or quality scalability. Comgstn

reading a minimum amount of bits from the coded data. All Performance is compared with JPEG 2000 [5].

this is done while reducing the memory necessary during the 0o
compression. . INTRODUCING BLOCK CODING

A. Interest

To provide random access, it is necessary to encode sep-
Compression of 3D data volumes poses a challenge dmtely different areas of the image. Encoding separately
the data compression community. Lossless or near losslgsstions of the image provides several other advantages.
compression is often required for these 3D data, whether, gcan-based mode compression is made possible as the
medical images or remote sensing hyperspectral images. Due \yhole image is not necessary.

I. INTRODUCTION

images are significant in size. In this situation, progresdata the ability to use different compression parameters for
encodmg_enables quick browsing of the image with limited  {ifferent parts of the image, enabling the possibility of
computational or network resources. high quality region of interest (ROI) and the possibility

For satellite sensors, the trend is toward increase in the of discarding unused portions of the image.

spatial resolution, the radiometric precision and pogstbe . transmission errors have a more limited effect in the
number of spectral bands, leading to a dramatic increaseint  cgontext of separate coding; the error only affects a limited
amount of bits generated by such sensors. Often, continuous portion of the image

acquisition of data is desired, which requires scan-based, reduced memory: if the processing is done only on one
mode compression capabilities. Fast access to lower tesolu part of the image at a a time, the number of coefficients

images is also required. As the size of images is growinggthe  jnyolved is dramatically reduced and so is the memory
additional features are becoming required properties &v n necessary to store the control lists in SPIHT.

compression algorithms.

SPIHT algorithm is a good candidate for on-board h;B- How?
perspectral data compression. A modified version of SPIHTThe tree structure defined in [6] (illustrated on Fig.1) is
is currently flying towards the 67P/Churyumov-Gerasimenkesed. The wavelet decomposition is completely done on each
comet and is targeted to reach in 2014 (Rosetta missi@pectrum (one direction) before applying a standard neshir
among other examples. This modified version of SPIHT @ution decomposition on each resulting band (alternattireg
used to compress the hyperspectral data of the VIRTIS itwo other directions). A tree is defined according to 2D SPIHT
strument [1]. This interest in zerotree-based coding is niot the spatial dimensions: on the lowest spatial subband one
restricted to hyperspectral data: the current developroéntout of four coefficient has no descendant and three out of four
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have each four descendants. The spectral link in the spectra —— . . . - -
direction is kept only for the lowest spatial subbands. By fwstas buato fus bows bow b ] e 1w

Fig. 2. Resolution scalable bitstream structufe;, R;, ...denote the
different resolutions,t16, ¢15, ...the different bitplanes. This bitstream
corresponds to the coding of one bloBl.

The algorithm described above possesses great flexibility
and the same image can be encoded up to an arbitrary reso-
lution level and down to a certain bitplane. The decoder can
just proceed to the same level to decode the image. However,
an interesting feature to have is the possibility to encdue t
image only once, with all resolutions and all bitplanes and
then during the decoding to choose which resolution andhwhic
bitplane to decode. One may need only a low resolution image
with high radiometric precision or a high resolution pontiof
the image with rough radiometric precision.

With the stream structure shown in Fig. 2, it is easy to
Fig. 1. lllustration of the tree structure. All descendafus a coefficient decode up to the desired resolution, but if not all bitplanes
(4, 4, k) with ¢ and k being odds ang being even are shown. are necessary, we need a way to jump to the beginning of

, . L resolution 1 once resolution O is decoded for the necessary
With this structure a natural block organization appears. @tplanes

tree-block is defined by 8 cqeﬁicients_from the lowest suldban To overcome this problem, we need to introduce a block
form|.ng a2 x 2 x 2 cube with all 'gh_elr o!escendants. All thep oo ger describing the size of each portion of the bitstream.
coefficients !mked to the root coefficient in the lowest saibth The new structures are illustrated in figures 3.

shown on Fig. 1 are part of the same tree-block together with
seven other trees. Each tree-block contains the same number:, 1, Ro R1 R2
of coefficients (which i2!'® for a 5 level decomposition) and
describes a region of the original image. This is similarie t
grouping of2 x 2 in the original SPIHT patent [7]. o3

Each of these tree-blocks (later refered as blocks) will be , _ _
encoded using a modified version of the SPIHT algorithm &g 3 Resalton scaat bisuear svuctre it hedts header alans

described in the next section. reading resolution ORg, R, ...denote the different resolutions,6, t15,
...the different bitplaned,; is the size in bits ofR;.

IRER] 6 v 15w 14 a oo L T T < T, we v us
' ' '

IIl. ENABLING RESOLUTION SCALABILITY

A. Introducing resolution scalability in SPIHT As in [8], simple markers could have been used to identify
The original SPIHT algorithm processes the coefficientse beginning of new resolutions of new bitplanes. Markers
bitplane by bitplane. Coefficients are stored in three diffié have the advantage to be shorter than a header coding the full

lists according to their significance. The notation usedfier size of the following block. However, markers make the full
similar to that of the original SPIHT [4]. reading of the bitstream compulsory and the decoder cannot
SPIHT does not originally distinguish between differerjtist jump to the desired part. As the cost of coding the header
resolution levels. To provide resolution scalability, weed remains low, this solution is chosen.
to process separately the different resolutions. To enidide
we keep three lists for each resolution levelWhenr = 0
only the highest pyramid level will be processed. For a ®lev ] ] -
wavelet decomposition in the spectral and spatial directio® Rate allocation and keeping the SNR scalability
decoding only the highest pyramid level will correspond to The problem of processing different areas of the image
the original image at the scale 1/32 on each dimension. separately always resides in the rate allocation for each of
This new algorithm provides strictly the same amount of bithese areas. A fixed rate for each area is usually not a sitabl
as the original SPIHT. The bits are just organized in a déffier decision as complexity most probably varies across the émag
order. With the block structure, the memory usage during tiifequality scalability is necessary for the full image, weede
compression is dramatically reduced. The resolution bddla to provide the most significant bits for one block before
with its several lists does not increase the amount of memdigishing the previous one. This could be obtained by cutting
necessary as the coefficients are just spread onto diffésemt the bitstream for all blocks and interleaving the parts ia th
The bitstream structure obtained for this algorithm is showproper order. With this solution, the rate allocation withtn
in Fig. 2 and called resolution scalable structure. be available at the bit level due to the block organization

IV. DRAWBACKS OF BLOCK PROCESSING AND
INTRODUCTION OF RATE ALLOCATION
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and the spatial separation, but a trade-off with qualityetay 16 L us I
organization can be used. 5o

RO s RL 1 R2 1 oa
' ' '

'. ' ' t '
RO ¢ RL 1 RZ 1 .. ROV 1 RL 1 ..
' ' ' ' '

B. Layer organization and rate-distortion optimization

The idea of quality layers is to provide in the same bitstream
different targeted bitrates. For example a bitstream cawige
two quality layers: one quality layer for 1.0 bit per pixeltgpp)
and one quality layer for 2.0 bpp. If the decoder needs a 1.0
bpp image, just the beginning of the bitstream is transterre B2
and decoded. If a higher quality 2.0 bpp image is needed, the

first layer is transmitted, decoded and then refined with the _
. . Fig. 4.  An embedded scalable bitstream generated for eamtk &,
information from the second layer.

. . The rate-distortion algorithm selects different cuttingints corresponding
As the bitstream for each block is already embedded, todifferent values of the parametér The final bitstream is illustrated on

construct these layers, we just need to select the cuttiirggoo Fi9- 5
for each block and each layer leading to the correct bitrétte w

the optimal quality for the entire image. Once again, it l@as t . . . . . .
P quality ; d - The distortion requires more processing. The distortidnesa

be a global optimization and not only local, as complexitit wi "™ _ . . .
vary gcross l:?locks y plexity during the encoding of one block can be obtained with a simple
A simple Lagrangian optimization method [9] gives théracklng. Let us cor!5|der the ms?a.nt n j[he compression he
the encoder is adding one precision bit for one coefficient

optimal cutting point for each blocl8,. As each block is he bitpl L d h e ¢
coded in an embedded way, choosing a different cutting poﬁ"nttt € _|tp ane. .et Ct enotg the new approxmanon 0
in the bitplanet given by adding this new bitz;,; was the

will lead to a different rateR;, and a different distortiorDy,. ati £ at th . bitpl

As the blocks are coded independently, their rates arejpeldjt?PProximation oic at i€ previous bitpiane. . .

and the final rate? = 3" Ry. The distortion measure can be SPIHT uses a deadzone quantizer so if the refinement bit

. _ - i1 ; : -

chosen as additive to have the final distortion= > Dy. A is 0 we havec, = Ct“t__l 27" and |fathe refmement k.m is 1

suitable measure is the squared error. we havec; = ct+1.+ 2. . Let call D* the total d|stc.>rt|on. of
The Lagrangian optimization [9] tells that given a paramet hi bIoc\l;VafLer th_'s bit was added arief the total distortion

A, the optimal cutting point for each blod; is the one which € ore_. € aye. )

minimizes the cost functiow,(\) = Dy + ARy. For each  * With a refinement bit of 0:

A and each block3g, it gives us an optimal function point

A A
116 0 15 e 1

. . . H
:
By |m).m.m H

RO+ RL 1+ RZ 1 .= RO &+ RLi R21
' ' ' ' ' '

N A
us 0 15 ua 1

. " " I "
RO+ ORI WRZ 4. RO FRL G
.

(R}, Dy). The total bitrate for a given is R* = > R} and D'—D" = (c—e)? = (c—cop)?
the total distortionD* = " D7. By varying theX parameter, ! o
an arbitrarily chosen bitrate is attainable. = (e —a)2e—a = a)
This optimization process leads to interleaving the tetatn = 27t (2(c —cy1) + 2“1) (1)

for the different blocks. After the coding of each block, we o
need to keep the coded data in memory in order to perform 9VINg
this optimization. This could be seen as a high cost to keep Y b i i
the coded data in memory, but it has to be highlighted that in D =D"+2 (2(0 —Cey1) +2 ) @)
order to obtain progressive quality data we need to keeptreith
the full image or the full bitstream in memory. Keeping the
bitstream costs less than keeping the original image. Hewev a_ b ot—1 t—1
this is not compatible with the requirements for scan-based Dr=D"=2 (2(0 1) — 2 ) 3)
mode image coding. In this situation, a trade-off can be foun Since this computation can be done using only right and
doing the rate allocation for a group of blocks and using laft bit shifts and additions, the computational cost is.low
buffer to balance a part of the complexity differences betwe ] ) .
the groups of blocks. D. )\ search: final bitstream formation
) ] ] ) ) Usually, we are interested in specifying a certain bitr&te
C. Low cost distortion tracking: during the compression ¢4, 4 given quality layer rather than a meaningless paramete
In the previous part, we assumed that the distortion was To specify a targeted bitrate, we have to find the right value
known for every cutting point of the bitstream for one blockfor A that will give this global bitrateR(\) = R.
As the bitstream for one block is in general about severalUsing the property highlighted in [9], we can use a fast
millions of bits, it is not conceivable to keep all this digton search algorithm to find the value afwhich is going to give
information in memory. Only few hundred cutting points ar¢he targeted bitrate. From a starting valyehe bitrateR(\) is
remembered with their rate and distortion information. calculated. According to the relative value Bf\) and R, the
Getting the rate for one cutting point is the easy panalue of A is modified. A dichotomic search is particularly
one just has to count the number of bits before this poirgfficient in this situation. It has to be emphasized that this

o with a refinement bit of 1:
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Fig. 5. The bitstreams are interleaved for different qualityers. To permit the random access to the different blothkes length in bits of each part
corresponding to a block;,, and a quality layer corresponding 2, is given byl(B, Aq)

TABLE |

computation for the bitstream ordering occurs after theklo
LOSSLESS PERFORMANCEEBPPPB

compression and only involves the cutting points stored in

memory. The search does not need to reprocess or access the Image JPEG 2000/ SPIHT-RARS
original or compressed data. Once thegiving the desired CT_skull 2.93 2.21
bitrate is found, we proceed to the next step and perform the MgT—WrihSt d %;g %Z%
; ; ; : : ; ; _saghea . .
bitstream interleaving to obtain the final bitstream (Fiy. 5 MR_ped.chest 500 196
moffett3 5.14 5.47
V. RESULTS jasperl 5.54 5.83
A Data cupritel 5.28 5.62
The hyperspectral data subsets originate from the Airborne TABLE Il
Visible Infrared Imaging Spectrometer (AVIRIS) sensorisTh DISTORTION FOR DIFFERENT RATES FORMOFFETT SG

bands . the range 400 nm 1o 2500 nm. Each band. is——FAC 0PRD) | 20 | 10 | 05 | 01
. . : . Kakadu v5.0 (PSNR) 89.01| 82.74| 77.63 | 67.27

approximately 10 nm spectral resolution. Depending on the 35 gp|HT-RARS (PSNR)| 88.18 | 81.95 | 76.60 | 66.39
sensor altitude, spatial resolution is between 4 and 20 m. We—==3~50 (RMSE) | 232 | 4.78 | 861 | 28.39
use radiance unprocessed data. The original AVIRIS scenes3p-spIHT-RARS (RMSE)| 2.56 | 5.24 | 9.69 | 31.42
are 614 x 512 x 224 pixels. For the simulations here, we Kakadu v5.0 (Emax) 24 66 157 | 1085
crop the data t&12 x 512 x 224 starting from the upper left ~ 3D-SPIHT-RARS (Emax)| 37 80 161 | 1020
corner of the scene. To make comparison easier with other
papers, we use well-known data sets: particularly the scene
3 of the f970620t01pQ03 run from AVIRIS on Moffett the lastest reference implementation of JPEG 2000Vénii-
Field, but also scene 1 from the f970403t01p02 run over cation Model(VM) version 9.1. Our results are not expected
Jasper Ridge and scene 1 from the f970619t01PQ2run to be better but are here to show that the increase in fleibili
over Cuprite site. Classical MR and CT medical images ag®es not come with a prohibitive cost in performance. It also
also used. has to be noted that the results presented here for 3D-SPIHT

Error is given in terms of PSNR, RMSE and maximunof 3D-SPIHT-RARS do not include any entropy coding of the
error. For AVIRIS sets, PSNR (Peak Signal to Noise Ratio) 8PIHT sorting output.
computed compared to the dynamic value of 16 BHSNR = Table | compares the lossless performance of the two
10log;((2'% —1)?/MSE, MSE being the Mean Square Erroralgorithms. For both, the same integer 5/3 wavelet transfor
RMSE is the Root Mean Square Error. All errors are measurgoperformed with the same number of decompositions in each
in the final reconstructed dataset compared to the origiatal. d direction. Performances are quite similar for the MR images
Choosing a distortion measure suitable to hyperspecttal dSPIHT-RARS outperforms JPEG 2000 on the CT images but
is not easy as shown in [10]. Distortion measures here @REG 2000 gives a lower bitrate for hyperspectral images.

popular and are selected to facilitate comparisons. Tables Il compares the lossy performances of the two
_ algorithms. It is confirmed that the increase in flexibilifytioe
B. Compression performances 3D-SPIHT-RARS algorithm does not come with a prohibitive

The raw compression performances of the previously dlPact on performances. We can observe less than 1 dB
fined 3D-SPIHT-RARS (Random Access with Resolutiodifférence between the two algorithms.
Scalability) are compared with the best up-to-date method . .
without taking into account the specific properties avéﬁabc' ROI coding and selected decoding
for the previously defined algorithm. The reference results The main interest of the present algorithm is in its flexthili
are obtained with the version 5.0 of Kakadu software [1T]he bitstream obtained in the resolution scalable mode ean b
using the JPEG 2000 part 2 options: wavelet intercomponetgcoded at variable spectral and spatial resolutions foh ea
transform to obtain a transform similar to the one used lata block. This is done reading, or transmitting, a minimum
our algorithm. PSNR values are similar to the best valuesimber of bits. Any area of the image can be decoded up to
published in [12]. The performances were also confirmedgusiany spatial resolution, any spectral resolution and arpldie.
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Fig. 6. Example of a decompressed image with different apatid spectral resolution for different areas. Backgrofarda 1) is with low spatial resolution
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