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Abstract— With the increase of remote sensing images, fast
access to some features of the image is becoming critical. This
access could be some part of the spectrum, some area of the
image, high spatial resolution. An adaptation of 3D-SPIHT
image compression algorithm is presented to allow random
access to some part of the image, whether spatial or spectral.
Resolution scalability is also available, enabling the decoding
of different resolution images from the compressed bitstream
of the hyperspectral data. Final spatial and spectral resolutions
are chosen independently. From the same compressed bitstream,
various resolutions and quality images can be extracted while
reading a minimum amount of bits from the coded data. All
this is done while reducing the memory necessary during the
compression.

I. I NTRODUCTION

Compression of 3D data volumes poses a challenge to
the data compression community. Lossless or near lossless
compression is often required for these 3D data, whether
medical images or remote sensing hyperspectral images. Due
to the huge amount of data involved, even the compressed
images are significant in size. In this situation, progressive data
encoding enables quick browsing of the image with limited
computational or network resources.

For satellite sensors, the trend is toward increase in the
spatial resolution, the radiometric precision and possibly the
number of spectral bands, leading to a dramatic increase in the
amount of bits generated by such sensors. Often, continuous
acquisition of data is desired, which requires scan-based
mode compression capabilities. Fast access to lower resolution
images is also required. As the size of images is growing, these
additional features are becoming required properties for new
compression algorithms.

SPIHT algorithm is a good candidate for on-board hy-
perspectral data compression. A modified version of SPIHT
is currently flying towards the 67P/Churyumov-Gerasimenko
comet and is targeted to reach in 2014 (Rosetta mission)
among other examples. This modified version of SPIHT is
used to compress the hyperspectral data of the VIRTIS in-
strument [1]. This interest in zerotree-based coding is not
restricted to hyperspectral data: the current developmentof

the CCSDS (Consultative Committee for Space Data Systems,
which gathers experts from different space agencies as NASA,
ESA and CNES) is oriented towards zero-trees principles [2]
because JPEG 2000 suffers from implementation difficultiesas
described in [3] (in the context of implementation compatible
with space constraints).

This paper presents the adaptation of the well-known
SPIHT algorithm [4] for 3D data enabling random access
and resolution scalability or quality scalability. Compression
performance is compared with JPEG 2000 [5].

II. I NTRODUCING BLOCK CODING

A. Interest

To provide random access, it is necessary to encode sep-
arately different areas of the image. Encoding separately
portions of the image provides several other advantages.

• scan-based mode compression is made possible as the
whole image is not necessary.

• encoding parts of the image separately also provides
the ability to use different compression parameters for
different parts of the image, enabling the possibility of
high quality region of interest (ROI) and the possibility
of discarding unused portions of the image.

• transmission errors have a more limited effect in the
context of separate coding; the error only affects a limited
portion of the image

• reduced memory: if the processing is done only on one
part of the image at a a time, the number of coefficients
involved is dramatically reduced and so is the memory
necessary to store the control lists in SPIHT.

B. How?

The tree structure defined in [6] (illustrated on Fig.1) is
used. The wavelet decomposition is completely done on each
spectrum (one direction) before applying a standard multires-
olution decomposition on each resulting band (alternatingthe
two other directions). A tree is defined according to 2D SPIHT
in the spatial dimensions: on the lowest spatial subband one
out of four coefficient has no descendant and three out of four
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have each four descendants. The spectral link in the spectral
direction is kept only for the lowest spatial subbands.

λ

x
y

Fig. 1. Illustration of the tree structure. All descendantsfor a coefficient
(i, j, k) with i andk being odds andj being even are shown.

With this structure a natural block organization appears. A
tree-block is defined by 8 coefficients from the lowest subband
forming a 2 × 2 × 2 cube with all their descendants. All the
coefficients linked to the root coefficient in the lowest subband
shown on Fig. 1 are part of the same tree-block together with
seven other trees. Each tree-block contains the same number
of coefficients (which is218 for a 5 level decomposition) and
describes a region of the original image. This is similar to the
grouping of2 × 2 in the original SPIHT patent [7].

Each of these tree-blocks (later refered as blocks) will be
encoded using a modified version of the SPIHT algorithm as
described in the next section.

III. E NABLING RESOLUTION SCALABILITY

A. Introducing resolution scalability in SPIHT

The original SPIHT algorithm processes the coefficients
bitplane by bitplane. Coefficients are stored in three different
lists according to their significance. The notation used here is
similar to that of the original SPIHT [4].

SPIHT does not originally distinguish between different
resolution levels. To provide resolution scalability, we need
to process separately the different resolutions. To enablethis
we keep three lists for each resolution levelr. When r = 0
only the highest pyramid level will be processed. For a 5-level
wavelet decomposition in the spectral and spatial direction,
decoding only the highest pyramid level will correspond to
the original image at the scale 1/32 on each dimension.

This new algorithm provides strictly the same amount of bits
as the original SPIHT. The bits are just organized in a different
order. With the block structure, the memory usage during the
compression is dramatically reduced. The resolution scalability
with its several lists does not increase the amount of memory
necessary as the coefficients are just spread onto differentlists.
The bitstream structure obtained for this algorithm is shown
in Fig. 2 and called resolution scalable structure.

t16

R0 R1 R2

t16t16t15 t15t15t14 t14Bk

Fig. 2. Resolution scalable bitstream structure.R0, R1, . . . denote the
different resolutions,t16, t15, . . . the different bitplanes. This bitstream
corresponds to the coding of one blockBk.

The algorithm described above possesses great flexibility
and the same image can be encoded up to an arbitrary reso-
lution level and down to a certain bitplane. The decoder can
just proceed to the same level to decode the image. However,
an interesting feature to have is the possibility to encode the
image only once, with all resolutions and all bitplanes and
then during the decoding to choose which resolution and which
bitplane to decode. One may need only a low resolution image
with high radiometric precision or a high resolution portion of
the image with rough radiometric precision.

With the stream structure shown in Fig. 2, it is easy to
decode up to the desired resolution, but if not all bitplanes
are necessary, we need a way to jump to the beginning of
resolution 1 once resolution 0 is decoded for the necessary
bitplanes.

To overcome this problem, we need to introduce a block
header describing the size of each portion of the bitstream.
The new structures are illustrated in figures 3.
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Fig. 3. Resolution scalable bitstream structure with header. The header allows
the decoder to jump directly to resolution 1 without completely decoding or
reading resolution 0.R0, R1, . . . denote the different resolutions,t16, t15,
. . . the different bitplanes.li is the size in bits ofRi.

As in [8], simple markers could have been used to identify
the beginning of new resolutions of new bitplanes. Markers
have the advantage to be shorter than a header coding the full
size of the following block. However, markers make the full
reading of the bitstream compulsory and the decoder cannot
just jump to the desired part. As the cost of coding the header
remains low, this solution is chosen.

IV. D RAWBACKS OF BLOCK PROCESSING AND

INTRODUCTION OF RATE ALLOCATION

A. Rate allocation and keeping the SNR scalability

The problem of processing different areas of the image
separately always resides in the rate allocation for each of
these areas. A fixed rate for each area is usually not a suitable
decision as complexity most probably varies across the image.
If quality scalability is necessary for the full image, we need
to provide the most significant bits for one block before
finishing the previous one. This could be obtained by cutting
the bitstream for all blocks and interleaving the parts in the
proper order. With this solution, the rate allocation will not
be available at the bit level due to the block organization
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and the spatial separation, but a trade-off with quality layers
organization can be used.

B. Layer organization and rate-distortion optimization

The idea of quality layers is to provide in the same bitstream
different targeted bitrates. For example a bitstream can provide
two quality layers: one quality layer for 1.0 bit per pixels (bpp)
and one quality layer for 2.0 bpp. If the decoder needs a 1.0
bpp image, just the beginning of the bitstream is transferred
and decoded. If a higher quality 2.0 bpp image is needed, the
first layer is transmitted, decoded and then refined with the
information from the second layer.

As the bitstream for each block is already embedded, to
construct these layers, we just need to select the cutting points
for each block and each layer leading to the correct bitrate with
the optimal quality for the entire image. Once again, it has to
be a global optimization and not only local, as complexity will
vary across blocks.

A simple Lagrangian optimization method [9] gives the
optimal cutting point for each blockBk. As each block is
coded in an embedded way, choosing a different cutting point
will lead to a different rateRk and a different distortionDk.
As the blocks are coded independently, their rates are additive
and the final rateR =

∑

Rk. The distortion measure can be
chosen as additive to have the final distortionD =

∑

Dk. A
suitable measure is the squared error.

The Lagrangian optimization [9] tells that given a parameter
λ, the optimal cutting point for each blockBk is the one which
minimizes the cost functionJk(λ) = Dk + λRk. For each
λ and each blockBk, it gives us an optimal function point
(Rλ

k , Dλ
k ). The total bitrate for a givenλ is Rλ =

∑

Rλ
k and

the total distortionDλ =
∑

Dλ
k . By varying theλ parameter,

an arbitrarily chosen bitrate is attainable.
This optimization process leads to interleaving the bitstream

for the different blocks. After the coding of each block, we
need to keep the coded data in memory in order to perform
this optimization. This could be seen as a high cost to keep
the coded data in memory, but it has to be highlighted that in
order to obtain progressive quality data we need to keep either
the full image or the full bitstream in memory. Keeping the
bitstream costs less than keeping the original image. However
this is not compatible with the requirements for scan-based
mode image coding. In this situation, a trade-off can be found
doing the rate allocation for a group of blocks and using a
buffer to balance a part of the complexity differences between
the groups of blocks.

C. Low cost distortion tracking: during the compression

In the previous part, we assumed that the distortion was
known for every cutting point of the bitstream for one block.
As the bitstream for one block is in general about several
millions of bits, it is not conceivable to keep all this distortion
information in memory. Only few hundred cutting points are
remembered with their rate and distortion information.

Getting the rate for one cutting point is the easy part:
one just has to count the number of bits before this point.

R0

t16 t15 t14

R0R0R1 R1R1R2 R2

R0

t16 t15 t14

R0R0R1 R1R1R2 R2

R0

t16 t15 t14

R0R0R1 R1R1R2 R2

R2

B0

B1

B2

λ0

λ0

λ0

λ1

λ1

λ1

Fig. 4. An embedded scalable bitstream generated for each block Bk.
The rate-distortion algorithm selects different cutting points corresponding
to different values of the parameterλ. The final bitstream is illustrated on
Fig. 5.

The distortion requires more processing. The distortion value
during the encoding of one block can be obtained with a simple
tracking. Let us consider the instant in the compression when
the encoder is adding one precision bit for one coefficientc
at the bitplanet. Let ct denote the new approximation ofc
in the bitplanet given by adding this new bit.ct+1 was the
approximation ofc at the previous bitplane.

SPIHT uses a deadzone quantizer so if the refinement bit
is 0 we havect = ct+1 − 2t−1 and if the refinement bit is 1
we havect = ct+1 + 2t−1. Let call Da the total distortion of
the block after this bit was added andDb the total distortion
before. We have:

• with a refinement bit of 0:

Da
− Db = (c − ct)

2
− (c − ct+1)

2

= (ct+1 − ct)(2c − ct − ct+1)

= 2t−1

(

2(c − ct+1) + 2t−1

)

(1)

giving

Da = Db + 2t−1

(

2(c − ct+1) + 2t−1

)

(2)

• with a refinement bit of 1:

Da = Db
− 2t−1

(

2(c − ct+1) − 2t−1

)

(3)

Since this computation can be done using only right and
left bit shifts and additions, the computational cost is low.

D. λ search: final bitstream formation

Usually, we are interested in specifying a certain bitrateR
for a given quality layer rather than a meaningless parameter
λ. To specify a targeted bitrate, we have to find the right value
for λ that will give this global bitrateR(λ) = R.

Using the property highlighted in [9], we can use a fast
search algorithm to find the value ofλ which is going to give
the targeted bitrate. From a starting valueλ, the bitrateR(λ) is
calculated. According to the relative value ofR(λ) andR, the
value of λ is modified. A dichotomic search is particularly
efficient in this situation. It has to be emphasized that this
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Layer 0: Layer 1: 
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Fig. 5. The bitstreams are interleaved for different quality layers. To permit the random access to the different blocks, the length in bits of each part
corresponding to a blockBk and a quality layer corresponding toλq is given byl(Bk , λq)

computation for the bitstream ordering occurs after the block
compression and only involves the cutting points stored in
memory. The search does not need to reprocess or access the
original or compressed data. Once theλ giving the desired
bitrate is found, we proceed to the next step and perform the
bitstream interleaving to obtain the final bitstream (Fig. 5).

V. RESULTS

A. Data

The hyperspectral data subsets originate from the Airborne
Visible Infrared Imaging Spectrometer (AVIRIS) sensor. This
hyperspectral sensor from NASA/JPL collects 224 contiguous
bands in the range 400 nm to 2500 nm. Each band is
approximately 10 nm spectral resolution. Depending on the
sensor altitude, spatial resolution is between 4 and 20 m. We
use radiance unprocessed data. The original AVIRIS scenes
are 614 × 512 × 224 pixels. For the simulations here, we
crop the data to512× 512× 224 starting from the upper left
corner of the scene. To make comparison easier with other
papers, we use well-known data sets: particularly the scene
3 of the f970620t01p02r03 run from AVIRIS on Moffett
Field, but also scene 1 from the f970403t01p02r03 run over
Jasper Ridge and scene 1 from the f970619t01p02r02 run
over Cuprite site. Classical MR and CT medical images are
also used.

Error is given in terms of PSNR, RMSE and maximum
error. For AVIRIS sets, PSNR (Peak Signal to Noise Ratio) is
computed compared to the dynamic value of 16 bits:PSNR =
10 log10(2

16 − 1)2/MSE, MSE being the Mean Square Error.
RMSE is the Root Mean Square Error. All errors are measured
in the final reconstructed dataset compared to the original data.
Choosing a distortion measure suitable to hyperspectral data
is not easy as shown in [10]. Distortion measures here are
popular and are selected to facilitate comparisons.

B. Compression performances

The raw compression performances of the previously de-
fined 3D-SPIHT-RARS (Random Access with Resolution
Scalability) are compared with the best up-to-date method
without taking into account the specific properties available
for the previously defined algorithm. The reference results
are obtained with the version 5.0 of Kakadu software [11]
using the JPEG 2000 part 2 options: wavelet intercomponent
transform to obtain a transform similar to the one used by
our algorithm. PSNR values are similar to the best values
published in [12]. The performances were also confirmed using

TABLE I

LOSSLESS PERFORMANCES(BPPPB)

Image JPEG 2000 SPIHT-RARS
CT skull 2.93 2.21
CT wrist 1.78 1.31

MR saghead 2.30 2.42
MR ped chest 2.00 1.96

moffett3 5.14 5.47
jasper1 5.54 5.83
cuprite1 5.28 5.62

TABLE II

DISTORTION FOR DIFFERENT RATES FORMOFFETT SC3

Rate (bpppb) 2.0 1.0 0.5 0.1
Kakadu v5.0 (PSNR) 89.01 82.74 77.63 67.27

3D-SPIHT-RARS (PSNR) 88.18 81.95 76.60 66.39
Kakadu v5.0 (RMSE) 2.32 4.78 8.61 28.39

3D-SPIHT-RARS (RMSE) 2.56 5.24 9.69 31.42
Kakadu v5.0 (Emax) 24 66 157 1085

3D-SPIHT-RARS (Emax) 37 80 161 1020

the lastest reference implementation of JPEG 2000, theVerifi-
cation Model(VM) version 9.1. Our results are not expected
to be better but are here to show that the increase in flexibility
does not come with a prohibitive cost in performance. It also
has to be noted that the results presented here for 3D-SPIHT
of 3D-SPIHT-RARS do not include any entropy coding of the
SPIHT sorting output.

Table I compares the lossless performance of the two
algorithms. For both, the same integer 5/3 wavelet transform
is performed with the same number of decompositions in each
direction. Performances are quite similar for the MR images.
SPIHT-RARS outperforms JPEG 2000 on the CT images but
JPEG 2000 gives a lower bitrate for hyperspectral images.

Tables II compares the lossy performances of the two
algorithms. It is confirmed that the increase in flexibility of the
3D-SPIHT-RARS algorithm does not come with a prohibitive
impact on performances. We can observe less than 1 dB
difference between the two algorithms.

C. ROI coding and selected decoding

The main interest of the present algorithm is in its flexibility.
The bitstream obtained in the resolution scalable mode can be
decoded at variable spectral and spatial resolutions for each
data block. This is done reading, or transmitting, a minimum
number of bits. Any area of the image can be decoded up to
any spatial resolution, any spectral resolution and any bitplane.
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Fig. 6. Example of a decompressed image with different spatial and spectral resolution for different areas. Background(area 1) is with low spatial resolution
and low spectral resolution as is can be seen on the spectrum (b). Area 2 has low spatial resolution and highspectral resolution (c), area 3 has high spatial
resolution but low spectral resolution (d). Finally, area 4has both high spectral and spatial resolutions. This decompressed image was obtained from a generic
bitstream, reading the minimum amount of bits.

This property is illustrated on Fig. 6. Most of the image
background (area 1) is decoded at low spatial and spectral
resolutions, dramatically reducing the amount of bits. Some
specific areas are more detailled and, offer the full spectral
resolution (area 2), the full spatial resolution (area 3) orboth
(area 4). The image from Fig. 6 was obtained reading only
16907 bits from the original311598 bits bitstream.

The region of interest can also be selected during the
encoding by adjusting the number of bitplanes to be encoded
for a specific block. In the context of on-board processing, it
would enable further reduction of the bitrate. The present en-
coder provides all these capabilities. For example, an external
clouds detection loop could be added to adjust the compression
paremeter to reduce the resolution when clouds are detected.
This would decrease the bitrate on these parts.

VI. CONCLUSION

An adaptation of the 3D-SPIHT algorithms is presented.
The 3D-SPIHT-RARS algorithm enables resolution scalability
for spatial and spectral dimensions independently. Coding
different areas of the image separately enables random access
and region of interest coding with a reduction in memory
usage during the compression. Thanks to the rate-distortion
optimization between the different areas, all this is done
without sacrificing compression capabilities.
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